On Certain Inequalities for Neuman-Sándor Mean

نویسندگان

  • Wei-Mao Qian
  • Yu-Ming Chu
چکیده

and Applied Analysis 3 (a, b), and let g󸀠(x) ̸ = 0 on (a, b). If f󸀠(x)/g󸀠(x) is increasing (decreasing) on (a, b), then so are f (x) − f (a) g (x) − g (a) , f (x) − f (b) g (x) − g (b) . (11) If f󸀠(x)/g󸀠(x) is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma 6 (see [11, Lemma 1.1]). Suppose that the power series f(x) = ∑ ∞ n=0 a n x n and g(x) = ∑∞ n=0 b n x n have the radius of convergence r > 0 and b n > 0 for all n ∈ {0, 1, 2, . . .}. Let h(x) = f(x)/g(x). Then, (1) if the sequence {a n /b n } ∞ n=0 is (strictly) increasing (decreasing), then h(x) is also (strictly) increasing (decreasing) on (0, r); (2) if the sequence {a n /b n } is (strictly) increasing (decreasing) for 0 < n ≤ n 0 and (strictly) decreasing (increasing) for n > n 0 , then there existsx 0 ∈ (0, r) such that h(x) is (strictly) increasing (decreasing) on (0, x 0 ) and (strictly) decreasing (increasing) on (x 0 , r). Lemma 7. The function h (t) = t cosh (3t) + 11t cosh (t) − sinh (3t) − 9 sinh (t) 2t [cosh (3t) − cosh (t)] (12) is strictly decreasing on (0, log(1 + √2)), where sinh(t) = (et − e −t )/2 and cosh(t) = (et + e−t)/2 are the hyperbolic sine and cosine functions, respectively. Proof. Let h 1 (t) = t cosh (3t) + 11t cosh (t) − sinh (3t) − 9 sinh (t) , h 2 (t) = 2t [cosh (3t) − cosh (t)] . (13) Then, making use of power series formulas, we have h 1 (t) = t ∞ ∑ n=0 (3t) 2n (2n)! + 11t ∞ ∑ n=0 (t) 2n

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuman–sándor Mean, Asymptotic Expansions and Related Inequalities

The subject of this paper is a systematic study of inequalities of the form (1−μ)M1 +μM3 M2 (1−ν)M1 +νM3 which cover Neuman-Sándor mean and some classical means. Furthermore, following inequalities with optimal parameters were proved: μ 1 H(s,t) +(1−μ) 1 NS(s,t) 1 A(s,t) ν 1 H(s,t) +(1−ν) 1 NS(s,t)

متن کامل

Sharp Inequalities Involving Neuman–sándor and Logarithmic Means

Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are established. The bounding quantities are the one-parameter bivariate means called the p-means. In this paper best values of the parameters of the bounding means are obtained. Mathematics subject classification (2010): 26E60, 26D07, 26D20.

متن کامل

Optimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means

In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...

متن کامل

On Two Bivariate Elliptic Means

This paper deals with the inequalities involving the Schwab-Borchardt mean SB and a new mean N introduced recently by this author. In particular optimal bounds, for SB are obtained. Inequalities involving quotients N/SB , for the data satisfying certain monotonicity conditions, are derived. Mathematics subject classification (2010): 26E60, 26D05.

متن کامل

Estimates for Neuman–sándor Mean by Power Means and Their Relative Errors

For a,b > 0 with a = b , let NS (a,b) denote the Neuman-Sándor mean defined by NS (a,b) = a−b 2arcsinh a−b a+b and Ap (a,b) , Lp (a,b) denote the r -order power and Lehmer means. Based on our earlier worker [27], we prove that αpAp < NS < Ap and Ap < NS βpAp holds if and only if p 4/3 and p p0 , respectively, where αp = ( 21/p−1 ) / ln(1+ √ 2) if p ∈ [1/4/3,∞), βp = ⎪⎨ ⎪⎩ NS (1,x0)/Ap (1,x0) if...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014